Every Banach space with a w*-separable dual hasa 1+ε-equivalent norm with the ball covering property  被引量:6

Every Banach space with a w*-separable dual has a 1+ε-equivalent norm with the ball covering property

在线阅读下载全文

作  者:CHENG LiXin, SHI HuiHua & ZHANG Wen School of Mathematical Sciences, Xiamen University, Xiamen 361005, China 

出  处:《Science China Mathematics》2009年第9期1869-1874,共6页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos.10471114,10771175)

摘  要:A normed space is said to have ball-covering property if its unit sphere can be contained in the union of countably many open balls off the origin. This paper shows that for every ε>0 every Banach space with a w*-separable dual has a 1+ε-equivalent norm with the ball covering property.A normed space is said to have ball-covering property if its unit sphere can be contained in the union of countably many open balls off the origin. This paper shows that for every ε>0 every Banach space with a w*-separable dual has a 1+ε-equivalent norm with the ball covering property.

关 键 词:BALL-COVERING PROPERTY RENORMING BANACH space 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象