检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LUO ZiYan XIU NaiHua
机构地区:[1]Department of Applied Mathematics,Beijing Jiaotong University,Beijing 100044,China
出 处:《Science China Mathematics》2009年第8期1769-1784,共16页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 10671010, 70841008)
摘 要:In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condition than the monotonicity. Based on the Nesterov-Todd, xy and yx directions employed as commutative search directions for semidefinite programming, we extend the variants of the short-, semilong-, and long-step path-following algorithms for symmetric conic linear programming proposed by Schmieta and Alizadeh to the Cartesian P*(κ)-SCLCP, and particularly show the global convergence and the iteration complexities of the proposed algorithms.In this paper, we establish a theoretical framework of path-following interior point algorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P *(κ)-property, a weaker condition than the monotonicity. Based on the Nesterov-Todd, xy and yx directions employed as commutative search directions for semidefinite programming, we extend the variants of the short-, semilong-, and long-step path-following algorithms for symmetric conic linear programming proposed by Schmieta and Alizadeh to the Cartesian P *(κ)-SCLCP, and particularly show the global convergence and the iteration complexities of the proposed algorithms.
关 键 词:Cartesian P *(κ)-property symmetric cone linear complementarity problem path-following interior point algorithm global convergence COMPLEXITY 90C33 90C51
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249