检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG WeiFan LI Chao
机构地区:[1]Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China
出 处:《Science China Mathematics》2009年第5期991-1003,共13页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant No. 10771197);the Natural Science Foundation of Zhejiang Province of China (Grant No. Y607467)
摘 要:A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G.In this paper, we prove that every graph G with girth g(G) and maximum degree Δ(G) that can be embedded in a surface of nonnegative characteristic has $ lc(G) = \left\lceil {\frac{{\Delta (G)}} {2}} \right\rceil + 1 $ if there is a pair (Δ, g) ∈ {(13, 7), (9, 8), (7, 9), (5, 10), (3, 13)} such that G satisfies Δ(G) ? Δ and g(G) ? g.A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we prove that every graph G with girth g(G) and maximum degree Δ(G) that can be embedded in a surface of nonnegative characteristic has lc(G) = Δ(2G )+ 1 if there is a pair (Δ, g) ∈ {(13, 7), (9, 8), (7, 9), (5, 10), (3, 13)} such that G satisfies Δ(G) Δ and g(G) g.
关 键 词:linear coloring graph of nonnegative characteristic GIRTH maximum degree 05C15
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249