Age-dependent branching processes in random environments  被引量:12

Age-dependent branching processes in random environments

在线阅读下载全文

作  者:LI YingQiu LIU QuanSheng 

机构地区:[1]College of Mathematics and Computing Science,Changsha University of Science and Technology,Changsha 410076,China [2]LMAM,Universit′e de Bretagne Sud,Campus de Tohannic,BP573,56017 Vannes,France

出  处:《Science China Mathematics》2008年第10期1807-1830,共24页中国科学:数学(英文版)

基  金:the National Natural Sciente Foundation of China (Grant Nos. 10771021, 10471012);Scientific Research Foundation for Returned Scholars, Ministry of Education of China (Grant No. [2005]564)

摘  要:We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξ n ) on ?+, and reproduce independently new particles according to a probability law p(ξ n ) on ?. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean E ξ Z(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ0,ξ1,...) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξn) on R+, and reproduce independently new particles according to a probability law p(ξn) on N. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean EξZ(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.

关 键 词:age-dependent branching processes random environments probability generating function integral equation extinction probability exponential growth rates of expectation and conditional expectation random walks and renewal equation in random environments renewal theorem 60J80 60K37 60K05 

分 类 号:O211.6[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象