Measure theory of statistical convergence  被引量:28

Measure theory of statistical convergence

在线阅读下载全文

作  者:CHENG LiXin LIN GuoChen LAN YongYi LIU Hui 

机构地区:[1]Department of Mathematics,Xiamen University,Xiamen 361005,China

出  处:《Science China Mathematics》2008年第12期2285-2303,共19页中国科学:数学(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant Nos. 10771175, 10471114)

摘  要:The question of establishing measure theory for statistical convergence has been moving closer to center stage, since a kind of reasonable theory is not only fundamental for unifying various kinds of statistical convergence, but also a bridge linking the studies of statistical convergence across measure theory, integration theory, probability and statistics. For this reason, this paper, in terms of subdifferential, first shows a representation theorem for all finitely additive probability measures defined on the σ-algebra of all subsets of N, and proves that every such measure can be uniquely decomposed into a convex combination of a countably additive probability measure and a statistical measure (i.e. a finitely additive probability measure μ with μ(k) = 0 for all singletons {k}). This paper also shows that classical statistical measures have many nice properties, such as: The set of all such measures endowed with the topology of point-wise convergence on forms a compact convex Hausdorff space; every classical statistical measure is of continuity type (hence, atomless), and every specific class of statistical measures fits a complementation minimax rule for every subset in N. Finally, this paper shows that every kind of statistical convergence can be unified in convergence of statistical measures.The question of establishing measure theory for statistical convergence has been moving closer to center stage, since a kind of reasonable theory is not only fundamental for unifying various kinds of statistical convergence, but also a bridge linking the studies of statistical convergence across measure theory, integration theory, probability and statistics. For this reason, this paper, in terms of subdifferential, first shows a representation theorem for all finitely additive probability measures defined on the σ-algebra A of all subsets of N, and proves that every such measure can be uniquely decomposed into a convex combination of a countably additive probability measure and a statistical measure (i.e. a finitely additive probability measure μ with μ(k) = 0 for all singletons {k}). This paper also shows that classical statistical measures have many nice properties, such as: The set S of all such measures endowed with the topology of point-wise convergence on A forms a compact convex Hausdorff space; every classical statistical measure is of continuity type (hence, atomless), and every specific class of statistical measures fits a complementation minimax rule for every subset in N. Finally, this paper shows that every kind of statistical convergence can be unified in convergence of statistical measures.

关 键 词:statistical convergence statistical measure SUBDIFFERENTIAL Banach space 60B05 46G99 40A99 

分 类 号:O212[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象