Optimization and static strength test of carbody of light rail vehicle  

Optimization and static strength test of carbody of light rail vehicle

在线阅读下载全文

作  者:秦泗吉 钟扬志 羊祥云 赵明慧 

机构地区:[1]College of Mechanical Engineering, Yanshan University [2]Technology Research Center, Xiangtan Electrical Manufacturing Co. Ltd.

出  处:《Journal of Central South University》2008年第S2期288-292,共5页中南大学学报(英文版)

摘  要:Preliminary structure of light rail vehicle (LRV) carbody made of steel was designed considering its usage, strength, manufacturing, etc. Based on the finite element analysis, the optimization of design parameters associated with thickness of LRV carbody is carried out to increase the whole strength of the carbody and to reduce its mass. With the aids of the substructure technique and the modified technique with discrete variables in the optimization based on the finite element method, the consumed computing time is reduced dramatically. The optimized LRV carbody is re-analyzed by FEM to obtain its static strength and vibrating mode and is manufactured. The mass of the optimized carbody reduces about 1.3 kg, and the relative reduction ratio is about 10%. Then, the strength test of the real carbody under the static load is executed. It is shown by the numerical and test results that the design requirements of the LRV carbody are satisfying. The newly designed carbody is used in the LRV, which is the first one used commercially developed by China independently. Nowadays, the LRV is running on the transportation circuit in Changchun of China.Preliminary structure of light rail vehicle (LRV) carbody made of steel was designed considering its usage, strength, manufacturing, etc. Based on the finite element analysis, the optimization of design parameters associated with thickness of LRV carbody is carried out to increase the whole strength of the carbody and to reduce its mass. With the aids of the substructure technique and the modified technique with discrete variables in the optimization based on the finite element method, the consumed computing time is reduced dramatically. The optimized LRV carbody is re-analyzed by FEM to obtain its static strength and vibrating mode and is manufactured. The mass of the optimized carbody reduces about 1.3 kg, and the relative reduction ratio is about 10%. Then, the strength test of the real carbody under the static load is executed. It is shown by the numerical and test results that the design requirements of the LRV carbody are satisfying. The newly designed carbody is used in the LRV, which is the first one used commercially developed by China independently. Nowadays, the LRV is running on the transportation circuit in Changchun of China.

关 键 词:OPTIMIZATION LRV carbody STRENGTH MODAL ANALYSIS SUBSTRUCTURE 

分 类 号:U270[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象