MOSCO CONVERGENCE OFQUASI-REGULAR DIRICHLET FORMS  

MOSCO CONVERGENCE OF QUASI-REGULAR DIRICHLET FORMS

作  者:孙玮 

出  处:《Acta Mathematicae Applicatae Sinica》1999年第3期225-232,共8页应用数学学报(英文版)

摘  要:A sufficient condition for the Mosco limit of a sequence of quasi-regular Dirichlet forms to be quasi-regular is given. In particular, a Dirichlet form is a quasi-regular Dirchlet form if and only if its Yosida approximation sequency satisfies the conditon. Furthermore, conditions for the Mosco limit of a sequence of symmetric (strictly strong) local quasi-regular Dirichlet forms to be (strictly strong) local are also presented. This paper extends the results of [1] from regular Dirichlet space to quasi-regular Dirichlet space.A sufficient condition for the Mosco limit of a sequence of quasi-regular Dirichlet forms to be quasi-regular is given. In particular, a Dirichlet form is a quasi-regular Dirchlet form if and only if its Yosida approximation sequency satisfies the conditon. Furthermore, conditions for the Mosco limit of a sequence of symmetric (strictly strong) local quasi-regular Dirichlet forms to be (strictly strong) local are also presented. This paper extends the results of [1] from regular Dirichlet space to quasi-regular Dirichlet space.

关 键 词:Quasi-regular Dirichlet form Mosco convergence uniformly tight Beurling-Deny formulae 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象