Conformal invariant Painlevé expansions and higher dimensional integrable models  被引量:1

在线阅读下载全文

作  者:楼森岳 

机构地区:[1]不详

出  处:《Science China Mathematics》1999年第5期537-545,共9页中国科学:数学(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No. 19975025); National "Climbing Project", Natural Science Foundation of Zhejiang Province; Youth Foundation of Zhejiang Province

摘  要:After the (1 + 1)-dimensional nonlinear Schrodinger equation is embedded in higher dimensions and the usual singularity analysis approach is extended such that all the Painleve expansion coefficients are conformal invariant, many higher dimensional integrable models are got after the nontrivial conformal invariant expansion coefficients are taken to be zero simply. The Painleve properties of the obtained higher dimensional models (including some (3 + 1)-dimensional models) are proved.After the (1+1)-dimensional nonlinear Schr(?)dinger equation is embedded in higher dimensions and the usual singularity analysis approach is extended such that all the Painlev(?) expansion coefficients are conformal invariant, many higher dimensional integrable models are got after the nontrivial conformal invariant expansion coefficients are taken to be zero simply. The Painlev(?) properties of the obtained higher dimensional models (including some (3+1)-dimensional models) are proved.

关 键 词:CONFORMAL INVARIANCE PAINLEVE analysis INTEGRABLE model. 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象