COMPACTIFICATIONS OF BANACH SPACES AND CONSTRUCTION OF DIFFUSION PROCESSES  

COMPACTIFICATIONS OF BANACH SPACES AND CONSTRUCTION OF DIFFUSION PROCESSES

在线阅读下载全文

作  者:宋士奇 

出  处:《Acta Mathematicae Applicatae Sinica》1994年第3期225-226,227228+229-2,共7页应用数学学报(英文版)

摘  要:Let E be a separable Banach space and μ be a probability measure on E. We consider Dirichlet forms εon L2(E,m).A special compactification MГ of E is studied in order to give a simple sufficient condition which ensures that the complement MГ-E has zero ε-capacity.As an application we prove that the classical Dirichlet forms introduced in Albeverio-Rockner[1]satisfy this sufficient condition.Let E be a separable Banach space and μ be a probability measure on E. We consider Dirichlet forms εon L2(E,m).A special compactification MГ of E is studied in order to give a simple sufficient condition which ensures that the complement MГ-E has zero ε-capacity.As an application we prove that the classical Dirichlet forms introduced in Albeverio-Rockner[1]satisfy this sufficient condition.

关 键 词:Banach space compactification Dirichlet form caparity diffusion process 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象