基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究  被引量:14

Gearbox state identification and remaining useful life prediction based on MoG-HMM

在线阅读下载全文

作  者:张星辉[1] 康建设[1] 高存明 曹端超[1] 滕红智[3] 

机构地区:[1]军械工程学院 [2]68262部队 [3]68129部队

出  处:《振动与冲击》2013年第15期20-25,31,共7页Journal of Vibration and Shock

摘  要:提出了基于混合高斯隐马尔可夫模型的齿轮箱状态识别与剩余使用寿命预测新方法。建立了基于聚类评价指标的状态数优化方法,通过计算待识别特征向量的概率值来识别齿轮箱当前状态。在状态识别的基础上,提出了剩余使用寿命计算方法。最后,利用齿轮箱全寿命实验数据进行验证,结果表明,该方法可以有效的识别齿轮箱状态并实现了剩余使用寿命预测,平均预测正确率为90.94%,为齿轮箱的健康管理提供了科学依据。A new approach for state recognition and remaining useful life(RUL) prediction based on Mixture of Gaussians Hidden Markov Model(MoG-HMM) was presented.The state number optimization method was established based on cluster validity measures.One can recognize the state through identifying the MoG-HMM that best fits the observations.Then,the RUL prediction method was presented on the recognition base.Finally,the data of a gearbox's full life cycle test was used to demonstrate the proposed methods.The results show that the mean accuracy of prediction is 90.94%.

关 键 词:混合高斯隐马尔可夫模型 剩余使用寿命预测 状态识别 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象