检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北农林科技大学机械与电子工程学院,陕西杨凌712100 [2]西安交通大学机械工程学院,西安710049
出 处:《吉林大学学报(工学版)》2013年第S1期43-46,共4页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(31000670);西北农林科技大学人才专项资金项目(Z1110209005)
摘 要:多人脸姿态估计是多姿态人脸识别的关键问题,至今尚未很好地解决。本文提出了一种基于PCA(Principal Component Analysis)算法的多人脸姿态估计方法,以获得人脸姿态与人脸图像在特征空间投影间的对应关系。算法首先利用PCA理论构建训练样本集的姿态子空间与特征向量,然后利用欧氏投影距离进行姿态估计,最后对方差贡献率与姿态估计准确率间的关系进行了研究。为了验证算法的有效性,利用23类姿态,共690个样本进行了实验,实验结果表明,该方法的姿态估计准确率为84%。说明将该方法应用与多姿态人脸估计是有效的,可行的。Pose estimation of different human faces is a key technology of varied human face recognitions which has not been well resolved yet.In order to get the mapping between face poses and feature spaces,an algorithm based on PCA was presented to realize the face pose estimations.Firstly,the subspaces and eigenvectors of different poses was built and selected by using PCA theory.Secondly,the Euclidean distance classifier was chosen to estimate the multi-poses of human faces.Lastly,the relationship between PCA's Variance contribution rates and pose estimation accuracy rates was investigated in detail.The algorithm was validated by means of experimental tests of human face pose database,which contains 23 kinds of poses and 630 samples in detail;experimental results show that the precision of this algorithm is above 84%.It also shows that the PCAbased pose estimation method is feasible and valid for varied human face recognition.
关 键 词:人脸姿态估计 主成分分析 姿态子空间 方差贡献率 特征向量
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15