基于局部约束线性编码的单帧和多帧图像超分辨率重建  被引量:3

Single-frame and multi-frame image super-resolution based on locality-constrained linear coding

在线阅读下载全文

作  者:卜莎莎 章毓晋[1] 

机构地区:[1]清华大学电子工程系,北京100084

出  处:《吉林大学学报(工学版)》2013年第S1期365-370,共6页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(61171118);高等学校博士学科点专项科研基金项目(SRFDP-20110002110057)

摘  要:基于稀疏表示的超分辨率图像重建是当前典型的算法之一,引入约束性更强的局部约束线性编码(LLC:Locality-constrained Linear Coding)对其进行了改进。首先依据一个高分辨率图像集训练出成对的高分辨率和低分辨率词典,然后根据低分辨率词典对输入的低分辨率图像用LLC方法进行编码,再依据高分辨率词典及编码系数初步重建高分辨率图像,最后添加全局约束重建高分辨率图像,并将该算法推广到多帧图像超分辨率重建层面。分析和对多幅图像的实验结果都表明,新算法相对原算法不仅提高了图像重建的质量还降低了计算复杂度,取得了满意的效果。Based on super-resolution image reconstruction algorithm of sparse representation,this paper presents an improved use of Locality-constrained Linear Coding(LLC)super-resolution reconstruction algorithm that can improve the quality of the image reconstruction while reducing the computational complexity and improving processing speed,which achieves good results.First a pair of high and low resolution Dictionary was trained in accordance with a set of high-resolution images,then LLC method was used to encode the input image with the low resolution dictionary.A high-resolution image was preliminarily reconstructed with high-resolution dictionary and coding coefficient,and finally a global constraint was added to rebuild the high-resolution image.The experimenttal results show that the new algorithm,comparing to the criginal algorithm,not only improves the quality of image reconstruction,but also reduces the computational complexity.The above improved algorithm has also been extended and applied to multi-frame image super-resolution reconstruction.Analysis and experiments show that this super-resolution reconstruction algorithm achieves some good results,it can improve the quality of the image reconstruction while reduce the computational complexity with improved processing speed.

关 键 词:超分辨率重建 局部约束线性编码 词典训练 稀疏表示 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象