检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘善梅[1,2] 李小昱[2] 钟雄斌 文东东[2] 赵政[2]
机构地区:[1]华中农业大学理学院,武汉430070 [2]华中农业大学工学院,武汉430070
出 处:《农业机械学报》2013年第S1期165-170,164,共7页Transactions of the Chinese Society for Agricultural Machinery
基 金:公益性行业(农业)科研专项资助项目(201003008)
摘 要:为了建立稳健的生鲜猪肉含水量高光谱预测模型,研究了样本集划分、光谱预处理和波段选择对模型预测效果的影响。实验结果表明,采用浓度梯度法划分样本结合多元散射校正、一阶导和标准化组合的光谱预处理方法建立的PLSR预测模型最优,交叉验证和预测相关系数分别为0.814和0.804,均方根误差分别为0.726%和0.686%。采用竞争性自适应重加权算法优选特征波段建模,显著提高了模型的预测精度,交叉验证和预测相关系数分别提高到0.926和0.924,均方根误差分别减小到0.467%和0.438%。In order to build a robust model for predicting water content in fresh pork based on hyperspectral imaging technology,the influence of sample set partition,spectral preprocessing and wavelengh selection on model prediction result was discussed.The pork sample set was parted by concentration gradient( CG) firstly,and then the reflectance spectra was pre-processed with multiple scattering correlation( MSC), first derivative and autoscale successively.The partial least square regression( PLSR) model was built,which had the best prediction abilities.The water content values were predicted with the cross-validation and prediction correlation coefficients( Rc and Rp) of 0.814 and0.804,with the root mean square error( RMSECV and RMSEP) values of 0.726% and 0.686%,respectively.The feature wavelengths were identified by using competitive adaptive reweighted algorithm.The proposed PLSR model was again built by using the feature wavelengths,which had remarkable prediction abilities with Rc and Rp of 0.926 and 0.924,with RMSECV and RMSEP of 0.467% and0.438%,respectively.
关 键 词:生鲜猪肉 含水率 高光谱 浓度梯度法 竞争性自适应重加权算法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.130