Analysis on the Performance of the SLIP Runner with Nonlinear Spring Leg  被引量:8

Analysis on the Performance of the SLIP Runner with Nonlinear Spring Leg

在线阅读下载全文

作  者:YU Haitao LI Mantian CAI Hegao 

机构地区:[1]State Key Laboratory of Robotics and System,Harbin Institute of Technology

出  处:《Chinese Journal of Mechanical Engineering》2013年第5期892-899,共8页中国机械工程学报(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.61175107);National Hi-tech Research and Development Program of China(863 Program;Grant No.2011AA0403837002);Self-Planned Task of State Key Laboratory of Robotics and System;Harbin Institute of Technology;China(Grant No.SKLRS201006B)

摘  要:The spring-loaded inverted pendulum(SLIP) has been widely studied in both animals and robots.Generally,the majority of the relevant theoretical studies deal with elastic leg,the linear leg length-force relationship of which is obviously conflict with the biological observations.A planar spring-mass model with a nonlinear spring leg is presented to explore the intrinsic mechanism of legged locomotion with elastic component.The leg model is formulated via decoupling the stiffness coefficient and exponent of the leg compression in order that the unified stiffness can be scaled as convex,concave as well as linear profile.The apex return map of the SLIP runner is established to investigate dynamical behavior of the fixed point.The basin of attraction and Floquet Multiplier are introduced to evaluate the self-stability and initial state sensitivity of the SLIP model with different stiffness profiles.The numerical results show that larger stiffness exponent can increase top speed of stable running and also can enlarge the size of attraction domain of the fixed point.In addition,the parameter variation is conducted to detect the effect of parameter dependency,and demonstrates that on the fixed energy level and stiffness profile,the faster running speed with larger convergence rate of the stable fixed point under small local perturbation can be achieved via decreasing the angle of attack and increasing the stiffness coefficient.The perturbation recovery test is implemented to judge the ability of the model resisting large external disturbance.The result shows that the convex stiffness performs best in enhancing the robustness of SLIP runner negotiating irregular terrain.This research sheds light on the running performance of the SLIP runner with nonlinear leg spring from a theoretical perspective,and also guides the design and control of the bio-inspired legged robot.The spring-loaded inverted pendulum(SLIP) has been widely studied in both animals and robots.Generally,the majority of the relevant theoretical studies deal with elastic leg,the linear leg length-force relationship of which is obviously conflict with the biological observations.A planar spring-mass model with a nonlinear spring leg is presented to explore the intrinsic mechanism of legged locomotion with elastic component.The leg model is formulated via decoupling the stiffness coefficient and exponent of the leg compression in order that the unified stiffness can be scaled as convex,concave as well as linear profile.The apex return map of the SLIP runner is established to investigate dynamical behavior of the fixed point.The basin of attraction and Floquet Multiplier are introduced to evaluate the self-stability and initial state sensitivity of the SLIP model with different stiffness profiles.The numerical results show that larger stiffness exponent can increase top speed of stable running and also can enlarge the size of attraction domain of the fixed point.In addition,the parameter variation is conducted to detect the effect of parameter dependency,and demonstrates that on the fixed energy level and stiffness profile,the faster running speed with larger convergence rate of the stable fixed point under small local perturbation can be achieved via decreasing the angle of attack and increasing the stiffness coefficient.The perturbation recovery test is implemented to judge the ability of the model resisting large external disturbance.The result shows that the convex stiffness performs best in enhancing the robustness of SLIP runner negotiating irregular terrain.This research sheds light on the running performance of the SLIP runner with nonlinear leg spring from a theoretical perspective,and also guides the design and control of the bio-inspired legged robot.

关 键 词:spring-loaded inverted pendulum legged locomotion apex return map nonlinear spring 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象