检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《微电子学与计算机》2015年第4期107-110,共4页Microelectronics & Computer
基 金:山东省科技发展计划资助项目(2014GGX101044)
摘 要:提出了基于概率测度的支持向量机算法,它采用概率分布作为均值嵌入构造再生希尔伯特空间,为了能够直接采用任何标准的基于核的学习技术,又构造了支持向量机的一般形式,称为基于概率测度的支持向量机(PMSVM).通过在MNIST数据库构建的虚拟样本进行实验,证明了该算法在识别率和时间消耗上更为有效.This paper proposes a support vector machine(SVM)algorithm based on probability measure.It employs these probability distributions as embeddings to reproduce kernel Hilbert space(RKHS).In order to reuse many standard kernel-based learning techniques in straightforward fashion,we construct the general form of support vector machine(SVM)called support vector machine based on probability measure(PM-SVM).We set up a virtual database by invariant transformation of the image through the MNIST database,and apply our algorithem to this database,The experimental results demonstrate the effectiveness of this algorithem in rate and efficiency to handwritten digit recognition.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46