检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军信息工程大学网络空间安全学院,河南郑州450002 [2]数学工程与先进计算国家重点实验室,河南郑州450002
出 处:《四川大学学报(工程科学版)》2015年第3期101-107,共7页Journal of Sichuan University (Engineering Science Edition)
基 金:国家"973"计划重点项目资助(2012CB315905;2012CB315901)
摘 要:为了快速精确地刻画实体行为的高动态性,提出一种基于连续时间隐Markov过程的信任评估模型。不同于离散时间隐Markov信任模型,该模型充分考虑到信任的时间相关性,结合交互记录之间的时间间隔,将实体信任评估问题归结为连续时间隐Markov过程的学习问题。进而利用改进的和声搜索算法,给出求解隐Markov过程最佳参数的算法,该算法有效地保证了全局搜索空间,能够获得更好的解。在此基础上,利用已有交互结果序列和最优参数组,对实体的信任度进行预测。仿真实验表明,该模型能够快速地反映出实体行为的动态性,具有较高的精确度,且能抵抗部分恶意攻击。In order to depict high dynamic of entity behavior quickly and accurately,a trust evaluation model based on continuous-time hidden Markov process was proposed. Different from the trust models on discrete-time hidden Markov chain,this model fully considered time dependence of trust,combined time intervals between the interactions and made the trust evaluation problem boil down to the learning problem of continuous-time hidden Markov process. Then an algorithm for solving the optimal parameters of hidden Markov process was given with the improved harmony algorithm,which could effectively guarantee the global search space and achieve a better solution.On this basis,the trust degree could be predicted using the existing interaction sequences and optimal parameters. Simulation results showed that the model is able to quickly reflect the dynamic of entity behavior,has high accuracy and resists the malicious attacks.
关 键 词:动态信任 隐Markov过程 和声搜索算法 信任度 微调空间
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222