检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张武军[1] 叶剑锋[1] 梁伟杰[1] 方鸽飞[1]
机构地区:[1]浙江大学电气工程学院,浙江省杭州市310027
出 处:《电网技术》2004年第11期67-71,共5页Power System Technology
摘 要:阐述了用于无功优化的改进遗传算法,在已有改进简单遗传算法的基础上,提出在含有多个目标的目标函数中采用线性变化和指数变化规律的越界罚系数,并对适应度函数进行模拟退火修正以保持种群的多样性和加快收敛;采用遗传因子自适应变化和改进的变异操作,可使遗传算法的全局优化和局部寻优能力大为提高。IEEE14节点系统的仿真计算结果表明,该方法在计算速度和收敛能力上优于简单遗传算法,且罚系数采用指数规律变化比采用定值或线性变化规律时收敛能力有明显改善。A modified genetic algorithm for reactive power optimization is presented. On the basis of the existing improved genetic algorithm, it is pointed out that to ensure the population diversity and to speed up the convergence the penalty coefficient with linear and exponential variation laws is applied to the objective function containing multi-objects, and the sufficiency function is modified by simulated annealing. Using the adaptive variance of the genetic factor and the improved variation operation, the global and partial optimization ability can be obviously improved. The results of calculation and simulation for IEEE 14-bus system show that in the aspects of calculation speed and convergence ability the presented method is better than simple genetic algorithm, and the convergence speed will be faster when the penalty coefficient varies by exponential law rather than the constant or linear variation law.
关 键 词:电力系统 无功优化 改进遗传算法 目标函数 适应度函数
分 类 号:TM714.3[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28