检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《水动力学研究与进展(A辑)》2004年第4期475-483,共9页Chinese Journal of Hydrodynamics
基 金:国家自然科学基金项目(50379022;59979013)
摘 要: 本文将分步有限元的计算方法引入到浅水方程组的求解中。该方法起源于Taylor Galerkin(T G)方法,但数值稳定性优于T G法并具有三阶精度。由于计算中没有引入高阶的空间导数项,实现起来比Taylor Galerkin方法简单,适用于非线性和多维问题的求解。计算模型中包含了零方程和双方程的紊流模型,可以根据需要选择。文中详细介绍了初始和边界条件的取法,并通过五个算例验证了计算模型的可靠性。A fractional step finite element method is introduced to solve the shallow water flows. This method originates from Taylor-Galerkin method. It has third-order accuracy and better stability property than the T-G method. Compared with Taylor-Galerkin method, no higher order spacial derivative is involved in the present one, so it can be easily implemented and is suitable for solving nonlinear and multi-dimensional problems. Zero-equation and two-equation turbulence models are included in the solver. The implementation of initial and boundary conditions is discussed in detail in this paper. Five numerical experiments are used to verify the present method.
分 类 号:TV142.1[水利工程—水力学及河流动力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225