检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《华北电力大学学报(自然科学版)》2004年第4期109-112,共4页Journal of North China Electric Power University:Natural Science Edition
基 金:华北电力大学青年基金资助项目 (060203).
摘 要:对于给定的阈值,通过计算变量之间的互信息,设计了一种构造贝叶斯网络结构的方法。改进了关于图模结构学习中常见的 MCMC 算法。将这种方法构造的贝叶斯网络作为马尔可夫链初始状态的网络结构,利用改进后的 MCMC 算法,构造一个关于贝叶斯网络结构的马尔可夫链。迭代给定次数后,得到关于变量组的贝叶斯网络结构。实验结果表明:改进前和改进后的两种方法得到的贝叶斯网络结构基本一致,网络结构的接受率也相近。For the given threshold, a new method of constructing the Bayesian network is proposed by computing the mutual information between two variables. The traditional Markov Chain Monte Carlo method for structural learning in graphical models MCMC algorithm is improved. Based on the improved algorithm, Markov Chain of the Bayesian network is got. The result of the experiment show that the Bayesian network learned by the improved method is similar to that learned by the old algorithm, and their accepted ratio is also very similar.
分 类 号:O211.5[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15