检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学自动化系,上海市200072 [2]江南大学电机工程研究所,江苏省无锡市214036
出 处:《电力系统自动化》2004年第15期7-14,共8页Automation of Electric Power Systems
基 金:国家自然科学基金资助项目(59937150)
摘 要:由于电力拍卖市场具有明显的寡头市场特征,且由于发电领域依然存在规模经济性,电力拍卖市场的定价规则出现了多种选择,如边际成本定价、按报价支付定价和当量电价定价法。文中构造了一个基于智能代理的仿真模型讨论3种定价方法的市场运行特征。该模型用具有分散自主决策和智能学习的代理表示发电厂商,在重复进行的报价博弈中,发电厂商通过利润高低按照生物的条件反射原理学习并改进报价策略,追求其利润最大化,随着迭代次数的增加,市场将逐步收敛于均衡位置。然后,通过不同定价方式的拍卖市场均衡状态的比较给出了3种定价方式的市场运行特点。给出了智能代理仿真的模型及其发电厂商的学习算法。最后用一个算例阐述了学习算法的特点。Because of the existences of market power and economies of scale, various pricing methods are proposed for pool based electricity market, such as uniform clearing pricing method (UCP), pay as bid pricing method (PAB) and the electricity value equivalent pricing method (EVE). In this paper, an agent-based simulation model was developed to compare the market characteristic of the different pricing methods. In the proposed model, the generators improve the bidding strategies by using reinforcement learning algorithm in repeating bidding game to seek for their maximum profit. Then the correlativity about the three pricing methods are discussed, and the generators learning algorithm is given. At last, a simple example is employed to explain the characters of learning in agent-based simulation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.84