检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孔祥玉[1] 魏瑞轩[2] 韩崇昭[1] 马红光[1]
机构地区:[1]西安交通大学电子与信息工程学院,西安710049 [2]空军工程大学工程学院,西安710049
出 处:《西安交通大学学报》2004年第8期831-834,共4页Journal of Xi'an Jiaotong University
基 金:国家重点基础研究发展规划资助项目 (2 0 0 1CB3 0 940 3 );国家自然科学基金资助项目 (60 3 0 40 0 4)
摘 要:针对输入输出观测数据均含有噪声的滤波问题,提出了一种稳定的总体最小二乘自适应算法.该算法以系统的增广权向量的瑞利商与增广权向量最后元素的约束项的和作为总损失函数,利用梯度最陡下降原理导出权向量的自适应迭代算法,并通过对算法稳定性的分析确定了算法中学习因子的取值范围.所提出的算法稳定,计算复杂度低,既没有平方根运算,也不需要标准化处理.仿真实验表明,该算法的收敛性能、鲁棒抗噪性能和稳态收敛精度均明显高于同类其他总体最小二乘算法.Aiming at the filter problem that the input and output signal are both corrupted by noise, a stable total least mean square (LMS) adaptive algorithm was proposed. Taking the sum of Rayleigh quotient of the augmented weight vectors of the system and a constraint to the last element of the augmented weight vectors via a LaGrange multiplier as an overall cost function, using the steepest descent principle, the adaptive updating formula of the weight vector was derived, the stability of the algorithm was analyzed, and the range of the learning factor to which the stability was guaranteed was educed. The proposed algorithm is stable and its computation complexity is lower, which can be realized neither calculating the squares root, nor normalization. The simulation results show that the convergence performance, the robust against noise and the convergence precision of the proposed algorithm are remarkably higher than those of other total LMS algorithms.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28