A SHOOTING METHOD FOR THE SWIFT-HOHENBERG EQUATION  

A SHOOTING METHOD FOR THE SWIFT HOHENBERG EQUATION

在线阅读下载全文

作  者:TaoYoushan ZhangJizhou 

机构地区:[1]Dept.ofAppl.Math.,DonghuaUniv.,Shanghai200051.China [2]CollegeofMath.Sci.,ShanghaiNormalUniv.,Shanghai200234,China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2002年第4期391-403,共13页高校应用数学学报(英文版)(B辑)

基  金:National Natural Science Foundation of China (1 0 0 71 0 67)

摘  要:Stationary even single bump periodic solutions of the Swift Hohenberg equation are analyzed. The coefficient k in the equation is found to be a critical parameter. It is proved if 0<k<1 , there exist periodic solutions having the same energy as the constant solution u=0; if 1<k<32 , there exist periodic solutions having the same energy as the stable states u=±k-1. The proof of the above results is based on a shooting technique, together with a linearization method and a scaling argument.Stationary even single bump periodic solutions of the Swift Hohenberg equation are analyzed. The coefficient k in the equation is found to be a critical parameter. It is proved if 0<k<1 , there exist periodic solutions having the same energy as the constant solution u=0; if 1<k<32 , there exist periodic solutions having the same energy as the stable states u=±k-1. The proof of the above results is based on a shooting technique, together with a linearization method and a scaling argument.

关 键 词:shooting technique Swift  Hohenberg equation critical point periodic solution. 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象