检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张雁冰[1] 杭大明[1] 马正新[1] 曹志刚[1]
机构地区:[1]清华大学电子工程系微波与数字通信国家重点实验室,北京100084
出 处:《软件学报》2004年第7期1090-1098,共9页Journal of Software
基 金:国家高技术研究发展计划(863)~~
摘 要:从最优决策的角度出发,将人工智能中的再励学习方法引入主动队列管理的研究中,提出了一种基于再励学习的主动队列管理算法RLGD(reinforcementlearninggradient-descent).RLGD以速率匹配和队列稳定为优化目标,根据网络状态自适应地调节更新步长,使得队列长度能够很快收敛到目标值,并且抖动很小.此外,RLGD不需要知道源端的速率调整算法,因而具有很好的可扩展性.通过不同网络环境下的仿真显示,RLGD与REM,PI等AQM算法相比,具有更好的性能和鲁棒性.From the viewpoint of decision theory, AQM (active queue management) can be considered as an optimal decision problem. In this paper, a new AQM scheme, Reinforcement Learning Gradient-Descent (RLGD), is described based on the optimal decision theory of reinforcement learning. Aiming to maximize the throughput and stabilize the queue length, RLGD adjusts the update step adaptively, without the demand of knowing the rate adjustment scheme of the source sender. Simulation demonstrates that RLGD can lead to the convergence of the queue length to the desired value quickly and maintain the oscillation small. The results also show that the RLGD scheme is very robust to disturbance under various network conditions and outperforms the traditional REM and PI controllers significantly.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222