检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连海事大学数理系,辽宁大连116026 [2]大连海事大学轮机工程学院,辽宁大连116026
出 处:《Journal of Mathematical Research and Exposition》2004年第3期405-410,共6页数学研究与评论(英文版)
基 金:SuppoSed by the Ministry of Communication(200332922505); the Doctoral Foundation of Ministry of Education(20030151005)
摘 要:The edge-tenacity of a graph G(V,E) is denned as min{(|S|+T(G-S))/ω(G-S):S(?)E(G)},where T(G ?S) and ω(G-S), respectively, denote the order of the largest component and the number of the components of G-S. This is a better parameter to measure the stability of a network G, as it takes into account both the quantity and the order of components of the graph G-S. In a previous work, we established a necessary and sufficient condition for a graph to be edge-tenacious. These results are applied to prove that K-trees are strictly edge-tenacious. A number of results are given on the relation of edge-tenacity and other parameters, such as the higher-order edge toughness and the edge-toughness.文[1]中,定义图G(V,E)的边韧性度定义为min{(|S|+T(G-S))/ω(G-S):S(?)E(G)},这里,T-(G-S)和ω(G-S)分别表示G-S中最大分支的顶点数和连通分支数.这是一个能衡量网络图稳定性较好的参数,因为它不仅考虑到了图G-S的分支数也考虑到了它的阶数.在以前的工作中,作者得到了边韧性度图的一个充要条件.利用这些结果证明了K-树是严格边韧性度图,并找到了边韧性度与较高阶的边坚韧度和边坚韧度之间的关系.
关 键 词:edge cut-sets strictly edge-tenacious graph K-trees higher-order edge toughness edge toughness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229