检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李香云[1] 杨君[2] 杨力行[3] 王立新[2]
机构地区:[1]清华大学公共管理学院 [2]中国科学地理科学与资源研究所,北京100101 [3]中国农业大学资源与环境学院,北京100094
出 处:《干旱地区农业研究》2004年第3期168-174,共7页Agricultural Research in the Arid Areas
基 金:国家重点基础研究发展规划项目(G1999043505)
摘 要:采用探索性数据分析技术——投影寻踪回归(PPR)模型,定量研究了干旱区农业土地生产力影响因素问题。以塔里木河流域40个县市作为研究单元,以近20a(分5个研究时段)的农业土地生产力(粮食产量)作为因变量,人类活动的5个因素(引水量、耕地、人力、化肥和机械力)作为自变量,通过建立PPR模型,研究了这一区域农业土地生产力增进中人类活动因素的贡献度。研究结果表明,耕地、引水量等资源性因素虽然在20世纪90年代后有一定程度的下降,但仍是这一区域生产力增进的主要因素,化肥增进作用显著。结果也表明,PPR模型适合于这类研究。The projection pursuit regression (PPR), a new exploratory data analysis method, was used to make a quantitative evaluation on human factors in the increase of land agricultural productivity (LAP) in arid area. Taking the 40 counties in Tarim River basin as samples, using food output as dependent variable, and 5 factors of human activities (water, cultivated land, agricultural labor forces, fertilizer, mechanical power) as independent variables, 5 PPR models were set up at 5 time phases (1980,1985,1990,1995,2000) so as to study the contributing degrees of the factors of human activities in the LAP increasing. The computing results show that the contributing degrees of resource factors (water and land) have appeared some descend since 1990's but is still the dominant factors in LAP increasing. The increasing role of fertilizer is obvious. The results also prove that PPR is a practicable method for the similar studies.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28