R^n上扩散过程的代数式收敛  被引量:2

Algebraic Convergence of Diffusion Processes on

在线阅读下载全文

作  者:王颖喆[1] 

机构地区:[1]北京师范大学数学系,北京100875

出  处:《数学学报(中文版)》2004年第5期1001-1012,共12页Acta Mathematica Sinica:Chinese Series

基  金:数学天元基金(TY10126032);国家自然科学基金(10121101);北京师范大学理科青年基金资助项目

摘  要:本文研究n维欧氏空间上的扩散过程在L2意义下的代数式收敛的情况,给出了判定代数式收敛的方法,并对两种特殊情形扩散算子进行了讨论.将所得判敛法应用于两个例子可得到精确的结果.Algebraic convergence in L2-sense is studied for diffusion processes on Rn. Some criteria for the convergence are presented. Furthermore, some special cases are studied in order to be compared with ordinary cases. The results are effective since the convergence region can be completely covered, as illustrated by two examples.

关 键 词:代数式收敛 扩散过程 耦合 

分 类 号:O211[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象