ON THE TOPOLOGY,VOLUME,DIAMETER AND GAUSS MAP IMAGE OF SUBMANIFOLDS IN A SPHERE  被引量:1

ON THE TOPOLOGY,VOLUME,DIAMETER AND GAUSS MAP IMAGE OF SUBMANIFOLDS IN A SPHERE

在线阅读下载全文

作  者:WUBINGYE 

机构地区:[1]DepartmentofMathematics,ZhejiangNormalUniversity,Jinhua321004,Zhejiang,China.

出  处:《Chinese Annals of Mathematics,Series B》2004年第2期207-212,共6页数学年刊(B辑英文版)

基  金:Project supported by the Fund of the Education Department of Zhejiang Province of China (No.20030707).

摘  要:In this paper, the author uses Gauss map to study the topology, volume and diameter of submanifolds in a sphere. It is proved that if there exist ε, 1≥ε > 0 and a fixed unit simple p-vector a such that the Gauss map g of an n-dimensional complete and connected submanifold M in Sn+p satisfies (g, a) ≥ε, then M is diffeomorphic to Sn, and the volume and diameter of M satisfy εnvol(Sn) ≤vol(M) ≤ vol(Sn)/ε and επ ≤diam(M) ≤ π/ε, respectively. The author also characterizes the case where these inequalities become equalities. As an application, a differential sphere theorem for compact submanifolds in a sphere is obtained.

关 键 词:Gauss map VOLUME DIAMETER Differential sphere theorem 

分 类 号:O189.31[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象