检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学电子科学与工程学院,长沙410073
出 处:《信号处理》2004年第3期322-325,289,共5页Journal of Signal Processing
基 金:JS63空间微波技术国防科技重点室基金(项目编号:2000JS63.3.1.KG0111)
摘 要:本文分析了直接序列扩频(DSSS)系统中最小错误概率(MPE)意义下的最优滤波器,并依据矩阵求逆引理证明最小均方误差(MMSE)意义下的最优滤波——维纳滤波也是MPE意义下的最优滤波。在DSSS中应用自适应滤波,无须先验已知扩频码的码型和干扰的统计特性,就能一并完成解扩以及有效抑制干扰。离散傅立叶变换/最小均方(DFT/LMS)算法的收敛速度远快于LMS算法,而运算量、稳健性与LMS算法基本相同。基于DFT/LMS算法的自适应滤波大大简化DSSS系统接收机的设计,显著增强系统抗干扰能力,具有很强的实用性。This paper analyzes the optimum filter optimized in the minimum probabil-ty of erro (MPE) sense in direct sequence spread spectrum (DSSS), then proves that, using matrix inversion lemma, the Wiener filter optimized in the minimum mean square error (MMSE) sense is also the optimum filter in the MPE sense. Applying the adaptive filter in DSSS, despreading and suppressing interfrence can be done simultaneously without prior knowledge of the pseudonoise code and the statistical characterization of the interference. The discret fourier transform / least mean square (DFT/LMS) algorithm has significantly improved convergence speed over the least mean square (LMS) algorithm, and meanwhile the complexities and robust performance of the two algorithms are almost identical. Since the adaptive filter using the DFT/LMS algorithm significantly simplifies the design of the receiver, and notably enhances the capability of the anti-interference, it is of good practicability.
关 键 词:DSSS DFT算法 LMS算法 性能分析 直接序列扩频系统
分 类 号:TN914.42[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30