机构地区:[1]DepartmentofGeography,UniversityofHongKong,HongKong [2]DepartmentofEnvironmentalScience,SunYatsen(Zhongshan)University
出 处:《Journal of Environmental Sciences》2004年第4期533-538,共6页环境科学学报(英文版)
基 金:TheDr.StephenHuiTrustFund ,theCommitteeonResearchandConferenceGrantsoftheUniversityofHongKongandtheNaturalScienceFoundationofGuangdongProvince(No.0 2 1 740 )
摘 要:The total carbon(C) and total nitrogen(N) content of suspended matter in a small undisturbed headwater drainage basin in the New Territories of Hong Kong has been monitored. Mean C and N contents were 12.85% and 0.99% respectively for 132 samples. Samples collected under stableflow conditions had mean C and N contents of 12.81% and 1.06% respectively. Stormflow samples had mean C and N values of 12.86% and 0.97% respectively, which were very similar to the levels observed under stableflow conditions. The mean C∶N ratios of 12.47 and 13.39 for stableflow and stormflow also reveal little difference according to hydrologic conditions. When all the data is considered little difference is observed in C and N according to the season. However, in winter there is a significant difference in C and N content between stable and stormflow samples. When C and N are plotted against water level the scattergraphs suggested that as stage increases the percentage of C and N in the suspended matter declines. Scattergraphs of C and N against suspended sediment concentration reveal a negative association. Comparison has been made between fresh leaf C, N and C/N ratio for trees and shrubs and the suspended matter. Fresh leaves do not appear to contribute significantly to suspended matter. The C/N ratio of suspended matter would also seem to exclude woody material and algae as sources of suspended matter.The total carbon(C) and total nitrogen(N) content of suspended matter in a small undisturbed headwater drainage basin in the New Territories of Hong Kong has been monitored. Mean C and N contents were 12.85% and 0.99% respectively for 132 samples. Samples collected under stableflow conditions had mean C and N contents of 12.81% and 1.06% respectively. Stormflow samples had mean C and N values of 12.86% and 0.97% respectively, which were very similar to the levels observed under stableflow conditions. The mean C∶N ratios of 12.47 and 13.39 for stableflow and stormflow also reveal little difference according to hydrologic conditions. When all the data is considered little difference is observed in C and N according to the season. However, in winter there is a significant difference in C and N content between stable and stormflow samples. When C and N are plotted against water level the scattergraphs suggested that as stage increases the percentage of C and N in the suspended matter declines. Scattergraphs of C and N against suspended sediment concentration reveal a negative association. Comparison has been made between fresh leaf C, N and C/N ratio for trees and shrubs and the suspended matter. Fresh leaves do not appear to contribute significantly to suspended matter. The C/N ratio of suspended matter would also seem to exclude woody material and algae as sources of suspended matter.
关 键 词:CARBON NITROGEN suspended matter Hong Kong
分 类 号:X52[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...