检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学计算机系603教研室,南京210094
出 处:《中国图象图形学报(A辑)》2004年第7期828-831,共4页Journal of Image and Graphics
摘 要:数字图像的清晰度评价一直是各类数字成像系统的一个关键问题 ,而在已有的一些的评价参数中 ,由于评价方法不同 ,均存在一些局限性 ,为此 ,针对图像的清晰程度提出一种新的评价方法 ,目的在于能够快速、准确地评价数字图像的清晰度。该评价方法评价参数可通过改进边缘锐度算法 (EAV)得到 ,然后与机测MTF值的变化趋势一起做曲线回归分析 ,以便和其他传统清晰度评价参数做对比。通过上百幅各类数字图像的测试 ,结果表明 ,该评价参数与数字成像系统的MTF值变化有着很好的正相关关系 ,其不仅能够更准确地反应数字图像清晰度变化的趋势 ,而且便于简捷。Evaluation of definition for gray scale digital image is an important aspect of digital imaging system. Thus, in order to evaluate the definition of a gray scale image accurately and effectively, we present a new approach based on EVA method which, while retaining important features of existing method, overcomes some of their limitation. With curvilinear regression analysis we can prove that the result of the new approach is high correlation with MTF measured by optical instrument, in other words, the new method is sensitive to the change of image definition. When compared with traditional method, the result of analysis can also show that the new method is better than traditional method, such as entropy, to assess gray scale digital image definition. Experiments using hundreds of many kinds of gray scale digital image and the result of this new approach is well accurate to the change of definition of digital image. Form these we can also draw a conclusion that the new approach can be well applied to many kinds of gray scale digital image accurately and effectively.
关 键 词:清晰度 曲线回归分析 点锐度算法 调制传递函数 数字图像 数字成像系统
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.14