一种基于三维模型和照片的合成“说话头”  被引量:3

A Talking Head Synthesis System Based on 3D-Model and Photo

在线阅读下载全文

作  者:赖伟[1] 孙岭[1] 王仁华[1] 

机构地区:[1]中国科学技术大学电子工程与信息科学系,合肥230027

出  处:《中国图象图形学报(A辑)》2004年第7期886-892,共7页Journal of Image and Graphics

摘  要:视觉语音的研究已经成为人机交互技术中一个非常活跃的领域 ,在语音的相关视觉信息当中 ,最主要的是说话人的口型乃至整个头部的图像 ,即“说话头”(talkinghead)。为了合成具有真实感的三维“说话头”模型 ,提出了一种基于三维模型和真人照片来合成真实“说话头”的方法 ,即在一个中性的三维人头部模型的基础上 ,从任意人的正面和侧面两张照片当中 ,通过提取脸形和五官位置等特征参数来校正模型 ,并且从照片中提取皮肤和头发等纹理 ,使得合成的模型能在较大程度上贴近真人。该方法综合了基于三维模型和基于图像库的建模方法 ,因此同时具有两者的优点 ,即既能够灵活控制表情和口型 ,又可自由旋转 ,不仅可实时合成 ,而且合成效果接近真人 ,自然度高。已将此模型应用于视觉语音合成系统 。Recently, research on Visual Speech attracts more and more attention. It has become a very active research field of the Human-Machine Interface. The chief information relative to speech is lip motion, face, and even the whole head, which is called “Talking Head”. To synthesis a lifelike three-dimension (3D) talking head model, a novel method is proposed in this paper, which is based on an individual independent 3D-model and photos of human face. At first, the features of face shape and the position of facial organs are extracted from a front-face and a side-face photo to revise the 3D-model and make it adapt the real person. Then, the textures of the skin and hair are picked from the photos and pasted on the revised 3D-model to make it looks like the person. This method integrates the techniques of 3D-model based modeling and photo lib based modeling, and has both of their advantages: the model has strong flexibility of synthesizing lip motions and expressions, can be rotated freely, can be synthesized in real-time, and can achieve a highly natural, lifelike 3D talking head visual effect. Then, the model is applied in a visual Text-to-Speech (TTS) talking head synthesis system, and gets a satisfying result.

关 键 词:说话头 视觉语音合成 三维模型 人脸动画 人机交互 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TN912.3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象