检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2004年第29期206-208,225,共4页Computer Engineering and Applications
基 金:云南省自然科学基金项目(编号:2002F0013M)
摘 要:数据仓库为数据挖掘提供了很好的平台,当数据仓库中的数据发生变化时,原来挖掘出来的模式也要相应地进行更新。MartinEster等最先提出了增量聚类算法,但算法在增量聚类过程中,更新对象依次一个个地单独处理,而没有考虑更新对象之间的关系,效率较低。该文提出了基于DBSCAN算法的批量增量聚类算法,减少了对象的检索,提高了增量聚类的效率。Data warehouses provide a great deal of opportunities for performing data mining.Typically,updates are collected and applied to the data warehouse in a batch mode.Then,all patterns derived from the warehouse have to be updated as well.Martin Ester introduced the first incremental clustering algorithm.But in the algorithm,sets of updates are processed one at a time without considering the relations between the single updates.In this paper,we present a incremental clustering algorithm based on DBSCAN in a batch mode,which improves the efficiency of pattern updates greatly by reducing the retrieve of updated objects.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.208.99