检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学土木工程防灾国家重点实验室,上海200092
出 处:《振动与冲击》2004年第3期79-82,共4页Journal of Vibration and Shock
基 金:教育部"高等学校骨干教师计划"资助项目
摘 要:多通道测压管路是获得实验模型表面多个邻近测点平均风压时程的必要测量系统 ,其测量结果对于计算结构风振响应具有重要意义。为了准确地计算多通道测压管路系统的频率响应函数 ,本文基于电路传输线理论 ,推导了可用于并联管道的耗散模型 ,进一步完善了原先只能用于串联管道的耗散模型 ,为今后深入分析多通道测压管路系统打下了理论基础。接着利用并联管道的耗散模型与Bergh_Tijdeman方程对几组不同管路系统的频率响应函数进行了计算 ,并将两个方程的计算结果与实验值进行比较 ,结果表明两个方程计算的结果完全一致 ,并与实验值吻合得很好。文中进一步指出较之递归式的Bergh_Tijdeman方程 。Parallel tube-manifold system is necessary to obtain area-averaged pressures on the surface of model, which is important in computing wind-induced dynamic responses of buildings. To estimate the transfer function accurately, theoretical representation of the dissipative model suitable for a parallel tube-manifold system is derived based on the electric circuit transmission-line theory. The dissipative model is improved and can be served as a springboard. The transfer functions of several parallel tube-manifold systems are calculated using the dissipative model as well as the Bergh-Tijdeman equation, and measured experimentally. The theoretical results obtained by the two methods are identical, and match the experimental results well. The dissipative model, which is non-recursion representation, is more convenient in use than the recursive Bergh-Tijdeman equation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147