Joint multivariate statistical model and its applications to synthetic earthquake predic-tion  被引量:14

Joint multivariate statistical model and its applications to synthetic earthquake predic-tion

在线阅读下载全文

作  者:韩天锡[1] 蒋淳[2] 魏雪丽[1] 韩梅[1] 冯德益[2] 

机构地区:[1]Tianjin University of Technology, Tianjin 300191, China [2]Earthquake Administration of Tianjin, Tianjin 300201, China

出  处:《地震学报》2004年第5期523-528,625,共6页Acta Seismologica Sinica

基  金:KeyProjectoftheTenthFive-yearPlanofStateScientificCommission(2001BA601B01-010506).

摘  要:针对目前地震综合预报中的一些问题,利用近30年来迅速发展的多元统计分析中主成分分析、判别分析组成多元统计组合模型,在众多的地震预报指标(预报因子)中采用信息最大化方法,选择对中期预测信息累积贡献率大于90%地震预报指标,分别进行相关分析、预测、检验,最终应用马氏距离判别作外推综合预报;并以华北地区(30°~42°N,108°125°E)为例进行模型的应用检验,初步研究已取得了较好的效果.Considering the problems that should be solved in the synthetic earthquake prediction at present, a new model is proposed in the paper. It is called joint multivariate statistical model combined by principal component analysis with discriminatory analysis. Principal component analysis and discriminatory analysis are very important theories in multivariate statistical analysis that has developed quickly in the late thirty years. By means of maximization information method, we choose several earthquake prediction factors whose cumulative proportions of total sample variances are beyond 90% from numerous earthquake prediction factors. The paper applies regression analysis and Mahalanobis discrimination to extrapolating synthetic prediction. Furthermore, we use this model to characterize and predict earthquakes in North China (30°~42°N, 108°~125°E) and better prediction results are obtained.

关 键 词:多元统计组合模型 主成分分析 判别分析 地震综合预报 

分 类 号:P315.7[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象