检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学自动化科学与工程学院,广东广州510640
出 处:《华南理工大学学报(自然科学版)》2004年第10期36-40,共5页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金重点资助项目 (6 0 3340 10 ) ;博士点专项科研基金资助项目 (2 0 0 30 5 6 10 13) ;广东省自然科学基金资助项目 (314 0 6 )~~
摘 要:利用矩阵不等式技巧 ,得到了一个新的具非线性时变扰动的不确定多状态时滞系统的鲁棒稳定性判据 .系统中的时滞是未知定常的 ,时变参数的不确定项是范数有界的 ,而非线性扰动项满足一定的线性约束 .基于矩阵不等式技巧和Lyapunov泛函方法 ,得到了以线性矩阵不等式 (LMI)形式给出的时滞相关鲁棒稳定性判据 .最后 ,通过两个示例表明 ,与文献方法相比 ,采用文中所提方法可减少结果所存在的保守性 。A new robust stability criterion for uncertain systems with multiple state-delays and nonlinear time-varying perturbations is obtained by the matrix inequality technique. In these systems, the delays are unknown constant, the time-varying parameter uncertainties are norm-bounded and the nonlinear perturbations meet certain linear constraints. Then, on the basis of matrix inequality technique and Lyapunov functional, a delay-dependent robust stability criterion expressed as LMI (Linear Matrix Inequality) is established. It is finally shown by two examples that, compared with the methods presented in the literatures, the method presented in this paper can reduce the conservativeness of the results, which indicates the validity of the proposed method.
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222