检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学自动化系,北京100084
出 处:《清华大学学报(自然科学版)》2004年第10期1348-1351,共4页Journal of Tsinghua University(Science and Technology)
基 金:国家"八六三"高技术项目(2001AA413320)
摘 要:部分最小二乘(PLS)算法在多元统计过程监控等领域得到了广泛应用。但常用的求解方法需要多次迭代求解残差矩阵,不利于对算法的理论分析和结论的解释。基于PLS算法的优化函数形式,该文提出一种新的PLS优化目标函数及相应简化算法。在此基础上构造了PLS算法与线性神经元网络之间的自然映射,给出了相应的训练算法及其理论分析。仿真结果验证了所提出算法的有效性,表明该算法可直接从原数据矩阵得到相应的成分及回归系数,并易于对其进行解释。The partial least squares algorithm is widely used for multivariate statistical process monitoring among other topics. The popular 'bootstrap' algorithm, however, requires repeated iterative calculations of the residual matrix, which makestheoretical analyses difficult and hinders concise interpretations of the results. This paper presents a simplified algorithm based on an optimization objective function. The partial least squares algorithm can then be easily mapped to a linear neural network. A weight updating strategy is provided with a rigorous mathematical proof. The efficiency of the technique is demonstrated through a simulation which demonstrates that the latent structures and regression coefficients can be directly obtained from the original data matrices and the results can be easily interpreted.
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42