检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YouLin WenQiaoyan XuMaozhi
机构地区:[1]Lab.ofCombinatoricsandInformationScience,HainanNormalUniversity,Halkou571158 [2]P.O.Box126,BeijingUniversityofPostsandTelecom.,Beijing100876 [3]SchoolofMathematics,PekingUniversity,Belting100871
出 处:《Journal of Electronics(China)》2004年第5期366-375,共10页电子科学学刊(英文版)
基 金:Supported by the National Natural Science Foundation of China(No.90104004) ;the National 973 High Technology Projects(No.G1998030420)
摘 要:The key operation in Elliptic Curve Cryptosystems(ECC) is point scalar multiplication. Making use of Frobenius endomorphism, Muller and Smart proposed two efficient algorithms for point scalar multiplications over even or odd finite fields respectively. This paper reduces the corresponding multiplier by modulo Υk-1 +…+Υ+ 1 and improves the above algorithms. Implementation of our Algorithm 1 in Maple for a given elliptic curve shows that it is at least as twice fast as binary method. By setting up a precomputation table, Algorithm 2, an improved version of Algorithm 1, is proposed. Since the time for the precomputation table can be considered free, Algorithm 2 is about (3/2) log2 q - 1 times faster than binary method for an elliptic curve overThe key operation in Elliptic Curve Cryptosystems(ECC) is point scalar multiplication. Making use of Frobenius endomorphism, Miiller and Smart proposed two efficient algorithms for point scalar multiplications over even or odd finite fields respectively. This paper reduces thementation of our Algorithm 1 in Maple for a given elliptic curve shows that it is at least as twice fast as binary method. By setting up a precomputation table, Algorithm 2, an improved version of Algorithm 1, is proposed. Since the time for the precomputation table can be considered free,Algorithm 2 is about (3/2) log2 q - 1 times faster than binary method for an elliptic curve over Fq.
关 键 词:Frobenius endomorphism Frobenius expansion Point scalar multiplication Binary method
分 类 号:TN918[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.17.22