DEVELOPMENT OF STEP-POOL SEQUENCE AND ITS EFFECTS IN RESISTANCE AND STREAM BED STABILITY  被引量:18

DEVELOPMENT OF STEP-POOL SEQUENCE AND ITS EFFECTS IN RESISTANCE AND STREAM BED STABILITY

在线阅读下载全文

作  者:Zhao-YinWANG JiangXU ChangzhiLI 

机构地区:[1]Dept.ofHydraulicEngineering,TsinghuaUniversity,Beijing&ChairmanofAdvisoryCouncil,InternationalResearchandTrainingCenteronErosionandSedimentation,100084,China [2]Dept.ofHydraulicEngineering,TsinghuaUniversity,Beijing,100084,China

出  处:《International Journal of Sediment Research》2004年第3期161-171,共11页国际泥沙研究(英文版)

摘  要:Experiments were conducted and field investigations were performed to study the development of step-pool sequence and its effects on resistance to the flow and stream bed stability. Step-pool sequence develops in incised channels as a result of streambed erosion, which is compared with sand dunes and armor layer of the role in resistance and streambed protection. The tight interlocking of particles in steps gives them an inherent stability which only extreme floods are likely to disturb. That stability suggests that step-pools are a valid equilibrium form, especially when coupled with their apparent regularity form and their role in satisfying the extreme condition of resistance maximization. The development degree of step-pools, SP, is proportional to the streambed slope. If the incoming sediment load is equal to or more than the sediment-carrying capacity of the flow, there is no bed erosion and thence there are no step-pools. If the flow depth increases and is over the step-height the resistance caused by the step-pool sequence will be greatly reduced. The rate of energy dissipation by step-pools is a function of SP. The higher is SP, the larger is the rate of energy dissipation. The step-pool sequence increases the resistance and flow depth, reduces the shear stress of the flow and protects the streambed from erosion. Moreover, step-pool sequence provides ecologically sound habitats for aquatic bio-community as well.Experiments were conducted and field investigations were performed to study the development of step-pool sequence and its effects on resistance to the flow and stream bed stability. Step-pool sequence develops in incised channels as a result of streambed erosion, which is compared with sand dunes and armor layer of the role in resistance and streambed protection. The tight interlocking of particles in steps gives them an inherent stability which only extreme floods are likely to disturb. That stability suggests that step-pools are a valid equilibrium form, especially when coupled with their apparent regularity form and their role in satisfying the extreme condition of resistance maximization. The development degree of step-pools, SP, is proportional to the streambed slope. If the incoming sediment load is equal to or more than the sediment-carrying capacity of the flow, there is no bed erosion and thence there are no step-pools. If the flow depth increases and is over the step-height the resistance caused by the step-pool sequence will be greatly reduced. The rate of energy dissipation by step-pools is a function of SP. The higher is SP, the larger is the rate of energy dissipation. The step-pool sequence increases the resistance and flow depth, reduces the shear stress of the flow and protects the streambed from erosion. Moreover, step-pool sequence provides ecologically sound habitats for aquatic bio-community as well.

关 键 词:STEP-POOL Streambed stability Erosion RESISTANCE Rate of energy dissipation Manning's roughness n 

分 类 号:P343.1[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象