检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹光远[1]
机构地区:[1]北京大学力学系,北京100871
出 处:《力学学报》1993年第3期334-342,共9页Chinese Journal of Theoretical and Applied Mechanics
摘 要:本文从一类色散波的积分形式解出发,在陈和邹提出的自适应开路边条件的基础上,采用进一步引入局部瞬时等价波速,和将非线性色散关系式ω(k)在某个适当选定的k_0处作Taylor展开这两种不同方式,得到了几类不同的、可用于色散波,特别是色散水波的开路边条件。并利用两类有解析解的例子,计算了几种开路边条件的“聚散比”。计算结果表明,本文提出的方法是有效的。The adaptive Open Boundary Condition (OBC) designed by Chen and the author is extended to cover the cases of dispersive waves. The design was based on a kind of dispersive solutions and an 'Equivalent Wave Velocity' was introduced. The latter was derived from dispersive relation ω= ω(k) by Taylor expansion locally. A couple of different kinds of OBC are obtained, which can be used to the numerical computation of dispersive waves, especially, dispersive water waves. Two examples which have exact solutions are calculated numerically with OBC designed. The criterion 'Rejection Factor' indicates the success of this design.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3