Improvement of strength of B/Al composite by thermal-mechanical cycling  

Improvement of strength of B/Al composite by thermal-mechanical cycling

在线阅读下载全文

作  者:覃耀春 何世禹 杨德庄 

机构地区:[1]School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

出  处:《中国有色金属学会会刊:英文版》2004年第5期907-911,共5页Transactions of Nonferrous Metals Society of China

基  金:Project (G19990 65 0 0 5 )supportedbytheNationalBasicResearchProgramofChina

摘  要:The mechanical properties of B/Al composite were measured at room temperature in the as-fabricated condition and after thermal-mechanical cycling(TMC). The effects of TMC on microstructure and tensile fracture behavior of B/Al composite were studied using transmission electron microscope(TEM) and scanning electron microscope(SEM). The fibers/matrix interfaces are degraded during TMC, the extent of which is enhanced with increasing the cycles, causing a measurable decrease of stageⅠmodulus of the B/Al composite. The TMC induces the dislocation generation in the aluminum matrix and the dislocation density increases with the cycles. The synergistic effect of the matrix strengthening and the interfacial degradation during TMC is found to play an important role in controlling the changes of tensile strengths and fracture behavior of the composite. The ultimate tensile strength of the composite increases with the cycles increasing. The interfaces in the B/Al composite change from the strongly-bonded states toward the appropriately-bonded ones with increasing the cycles. TMC will provide an approach of improving the strength of B/Al composites.The mechanical properties of B/Al composite were measured at room temperature in the as-fabricated condition and after thermal-mechanical cycling(TMC). The effects of TMC on microstructure and tensile fracture behavior of B/Al composite were studied using transmission electron microscope(TEM) and scanning electron microscope(SEM). The fibers/matrix interfaces are degraded during TMC, the extent of which is enhanced with increasing the cycles, causing a measurable decrease of stageⅠmodulus of the B/Al composite. The TMC induces the dislocation generation in the aluminum matrix and the dislocation density increases with the cycles. The synergistic effect of the matrix strengthening and the interfacial degradation during TMC is found to play an important role in controlling the changes of tensile strengths and fracture behavior of the composite. The ultimate tensile strength of the composite increases with the cycles increasing. The interfaces in the B/Al composite change from the strongly-bonded states toward the appropriately-bonded ones with increasing the cycles. TMC will provide an approach of improving the strength of B/Al composites.

关 键 词:B/Al合成物 微观结构 机械性能 TMC 温度 

分 类 号:TB331[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象