检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001
出 处:《电子学报》2004年第11期1910-1914,共5页Acta Electronica Sinica
基 金:国家自然科学基金 (No .60 4 751 1 ;No.60 0 750 1 0 )
摘 要:现有Lifting分解 (LiftingFactorization ,LF)算法不能在较短时间内求解出较长离散小波变换 (DiscreteWaveletTransform ,DWT)滤波器组的所有数值稳定LF ,更无法计算最优LF .在LF的形式化分析基础上 ,提出了DWT多相矩阵的常数最大公因子分解方法 ,极大缩小了分解搜索空间 ;进一步 ,从数值稳定性及计算复杂性两方面研究了LF评价问题 ;最后 ,提出了基于联合优化的最优LF算法 .实验结果表明 ,本文算法在解的质量。Lifting factorization (LF) was one of the latest advancements of study on fast DWT implementations.Because of exponential size of the factorization set,known algorithms could not find in reasonable time all stable (to say nothing of optimal) LFs of a given DWT with long filters.In this paper,a so-called constant GCD (Greatest Common Divisor) factorization approach to FIR polyphase matrix was given,which contracted considerably the factorization space.Furthermore,the problem of how to evaluate a certain LF was investigated in terms of both numerical stability and computation complexity.Consequently,an algorithm called OLFA (Optimal LF Algorithm) was readily available.All of the theoretical results were constructively proven.Experimental data show that OLFA obtains considerable improvements in solution quality,computation time and application range over the existing algorithms,thus makes LF a tool of great generality and practicability for fast DWT implementations.
关 键 词:DWT 最优Lifting分解 Euclidean算法 分解稳定性
分 类 号:TN911.72[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28