检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学计算机科学与工程系,辽宁大连116024
出 处:《大连理工大学学报》2004年第6期901-905,共5页Journal of Dalian University of Technology
摘 要:为了实现各类空间联机分析,提供更加全面灵活的空间决策支持,提出了一个空间数据立方体与空间索引结构相互协作的空间数据仓库模型,并同时构建了一个与之协作的空间索引结构aR*Btree.aR*Btree基于R*tree和Btree实现,存储了空间维及时间维的聚集信息和层次关系,可以有效支持区域聚集查询.对各种空间联机分析操作进行了分类,分析表明该模型充分利用了传统数据仓库成熟的建模和联机分析技术,结合了空间索引结构在空间层次结构上的灵活特性,可以有效地支持各类空间联机分析.最后比较了aR*Btree与其他索引结构在区域聚集查询方面的性能.实验结果证明,在区域聚集查询中aR*Btree的节点访问次数和查询执行时间均小于现有索引结构.To realize different kinds of spatial OLAP operations and provide spatial decision support more flexibly, a spatial data warehouse framework is studied, in which spatial data cube cooperates with spatial index structure. By incorporating to it, a spatial index structure named aR~*Btree is proposed to support spatial analysis flexibly on complex spatial hierarchies. The aR~*Btree is an improved and conjoint version of the R~*tree and Btree which stores both the hierarchies relations of time and spatial dimension and the aggregate values of them. The framework takes full advantage of traditional data warehousing technology and the favorable characteristics of index structure in hierarchies′ management. By classifying OLAP operations, it shows how these spatial OLAP operations are efficiently supported in the framework. Finally the performance of range aggregate processing is compared with other indices, and the result shows that the node accesses and executive time of aR~*Btree′s range aggregate queries is superior to those of other structures.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.119