Multiscale MRF-based Texture Segmentation of SAR Image  被引量:3

在线阅读下载全文

作  者:XUXin LIDeren SUNHong 

机构地区:[1]SchoolofElectronicInformation,WuhanUniversity,Wuhan430079,China [2]NationalLaboratoryforInformationEngineeringinSurveying,MappingandRemoteSensing,WuhanUniversity,Wuhan430079,China

出  处:《Chinese Journal of Electronics》2004年第4期671-675,共5页电子学报(英文版)

摘  要:We propose a multiscale Bayesian segmentation algorithm for SAR image in this paper. A hierarchical two-level Markov random field (MRF) is applied to represent both texture and region label over the wavelet lattice. The high level uses an isotropic Multi-level logistic (MLL) random field to characterize the blob-like region formation process at each scale and the interscale dependencies over the corresponding multiresolution region. At lower level a novel Causal Gaussian autoregressive (CGAR) process is proposed to describe the fill-in of multiresolution region. Once the multiscale double MRFs model is established, in term of Sequential maximum a posteriori (SMAP), model parameter estimate and region segmentation are performed alternately from coarse to fine scale. Our segmentation method is tested on both synthetic and ERS-1 SAR images.

关 键 词:MRF CGAR SMAP SAR 合成孔径雷达 图像处理 图像分割 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象