检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WeiWang Qing-QingYuan Hao-FengZhou Ming-ShengHong Bai-LeShi
机构地区:[1]DepartmentofComputingandInformationTechnology,FudanUniversity,Shanghai200433,P.R.China
出 处:《Journal of Computer Science & Technology》2004年第6期867-875,共9页计算机科学技术学报(英文版)
基 金:国家自然科学基金,国家高技术研究发展计划(863计划)
摘 要:Mining frequent patterns from datasets is one of the key success of data mining research. Currently, most of the studies focus on the data sets in which the elements are independent, such as the items in the marketing basket. However, the objects in the real world often have close relationship with each other. How to extract frequent patterns from these relations is the objective of this paper. The authors use graphs to model the relations, and select a simple type for analysis. Combining the graph theory and algorithms to generate frequent patterns, a new algorithm called Topology, which can mine these graphs efficiently, has been proposed. The performance of the algorithm is evaluated by doing experiments with synthetic datasets and real data. The experimental results show that Topology can do the job well. At the end of this paper, the potential improvement is mentioned.Mining frequent patterns from datasets is one of the key success of data mining research. Currently, most of the studies focus on the data sets in which the elements are independent, such as the items in the marketing basket. However, the objects in the real world often have close relationship with each other. How to extract frequent patterns from these relations is the objective of this paper. The authors use graphs to model the relations, and select a simple type for analysis. Combining the graph theory and algorithms to generate frequent patterns, a new algorithm called Topology, which can mine these graphs efficiently, has been proposed. The performance of the algorithm is evaluated by doing experiments with synthetic datasets and real data. The experimental results show that Topology can do the job well. At the end of this paper, the potential improvement is mentioned.
关 键 词:data mining frequent pattern GRAPH
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.163.164