检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[2]DepartmentofPhilosophy,NankaiUniversity,Tianjin300071,China [3]CollegeofMathematicsandInformationScience,HenanUniversity,Kaifeng475001,China
出 处:《Chinese Quarterly Journal of Mathematics》2004年第4期346-349,共4页数学季刊(英文版)
摘 要:The reference [4] proved the consistency of S1 and S2 among Lewis' five strict implication systems in the modal logic by using the method of the Boolean-valued model. But, in this method, the consistency of S3, S4 and S5 in Lewis five strict implication systems is not decided. This paper makes use of the properties: (1) the equivalence of the modal systems S3 and P3, S4 and P4; (2) the modal systems P3 and P4 all contained the modal axiom T(□p→p); (3) the modal axiom T is correspondence to the reflexive property in VB. Hence, the paper proves: (a) ‖As31‖=1; (b) ‖As41‖=1; (c) ‖As51‖=1 in the model (V^B,R,‖ ‖)(where B is a complete Boolean algebra, R is reflexive property in V^B).Therefore, the paper finally proves that the Boolean-valued model V^B of the ZFC axiom system in set theory is also a Boolean-valued model V^B of the ZFC axiom system in set theory is also a Boolean-valued model of Lewis the strict implication system S3, S4 and S5.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15