关于严格蕴涵系统的布尔值模型(续)  

在线阅读下载全文

作  者:李娜 刘华珂 

机构地区:[2]DepartmentofPhilosophy,NankaiUniversity,Tianjin300071,China [3]CollegeofMathematicsandInformationScience,HenanUniversity,Kaifeng475001,China

出  处:《Chinese Quarterly Journal of Mathematics》2004年第4期346-349,共4页数学季刊(英文版)

摘  要:The reference [4] proved the consistency of S1 and S2 among Lewis' five strict implication systems in the modal logic by using the method of the Boolean-valued model. But, in this method, the consistency of S3, S4 and S5 in Lewis five strict implication systems is not decided. This paper makes use of the properties: (1) the equivalence of the modal systems S3 and P3, S4 and P4; (2) the modal systems P3 and P4 all contained the modal axiom T(□p→p); (3) the modal axiom T is correspondence to the reflexive property in VB. Hence, the paper proves: (a) ‖As31‖=1; (b) ‖As41‖=1; (c) ‖As51‖=1 in the model (V^B,R,‖ ‖)(where B is a complete Boolean algebra, R is reflexive property in V^B).Therefore, the paper finally proves that the Boolean-valued model V^B of the ZFC axiom system in set theory is also a Boolean-valued model V^B of the ZFC axiom system in set theory is also a Boolean-valued model of Lewis the strict implication system S3, S4 and S5.

关 键 词:布尔值模型 严格蕴涵系统 VB 

分 类 号:O144[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象