检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学计算机科学与技术系,北京100084
出 处:《计算机学报》2004年第12期1688-1694,共7页Chinese Journal of Computers
基 金:国家自然科学基金 ( 69873 0 2 4);国家"九七三"重点基础研究发展规划项目基金 (G19980 3 0 40 6)资助
摘 要:基于市场机制的QoS控制模型 (MQC)的求解是一个NP Hard问题 ,对此作者提出一种改进遗传算法(MGA)用于求解 ,与传统遗传算法相比加入自适应预测器 ,同时在遗传操作中采用自适应遗传因子指导搜索过程 .最后通过实验证明该算法快速有效 .This paper proposes an improved genetic algorithm (MBA) to solve the market-based QoS control model (MQC) which uses market mechanisms to provide QoS control services and essentially a NP-Hard problem. MQC is carefully studied, two key components of MBA are introduced: a QoS prediction strategy and an adaptive genetic algorithm. The QoS prediction strategy predicts the QoS parameters for future using adaptive linear prediction that minimizes the mean square error, and so comes the name Self-Adaptive Least Mean Square Line Predictor (SLMSLP). The adaptive technique of SLMSLP does not require any prior knowledge of the QoS statistics, nor assume stationarity. The results for QoS prediction from an experimental system verifies the better prediction capability of SLMSLP under different parameters and numbers of application. Besides with SLMSLP, an adaptive genetic algorithm is proposed to compute the best price and network resource distribution in MQC. Contrasted with traditional genetic algorithm, the adaptive genetic algorithm has an exchange of crossover and mutation in sequence and adaptive probabilities of crossover and mutation, which protects the diversity of colony. The performance comparison from an experimental system shows that the MBA algorithm is effective and efficient with computing time reduced by over 20%.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.253.54