基于市场机制的QoS控制模型MQC的改进遗传算法求解  被引量:1

Solving Market-Based QoS Control Model with Improved Genetic Algorithm

在线阅读下载全文

作  者:常冬[1] 张尧学[1] 

机构地区:[1]清华大学计算机科学与技术系,北京100084

出  处:《计算机学报》2004年第12期1688-1694,共7页Chinese Journal of Computers

基  金:国家自然科学基金 ( 69873 0 2 4);国家"九七三"重点基础研究发展规划项目基金 (G19980 3 0 40 6)资助

摘  要:基于市场机制的QoS控制模型 (MQC)的求解是一个NP Hard问题 ,对此作者提出一种改进遗传算法(MGA)用于求解 ,与传统遗传算法相比加入自适应预测器 ,同时在遗传操作中采用自适应遗传因子指导搜索过程 .最后通过实验证明该算法快速有效 .This paper proposes an improved genetic algorithm (MBA) to solve the market-based QoS control model (MQC) which uses market mechanisms to provide QoS control services and essentially a NP-Hard problem. MQC is carefully studied, two key components of MBA are introduced: a QoS prediction strategy and an adaptive genetic algorithm. The QoS prediction strategy predicts the QoS parameters for future using adaptive linear prediction that minimizes the mean square error, and so comes the name Self-Adaptive Least Mean Square Line Predictor (SLMSLP). The adaptive technique of SLMSLP does not require any prior knowledge of the QoS statistics, nor assume stationarity. The results for QoS prediction from an experimental system verifies the better prediction capability of SLMSLP under different parameters and numbers of application. Besides with SLMSLP, an adaptive genetic algorithm is proposed to compute the best price and network resource distribution in MQC. Contrasted with traditional genetic algorithm, the adaptive genetic algorithm has an exchange of crossover and mutation in sequence and adaptive probabilities of crossover and mutation, which protects the diversity of colony. The performance comparison from an experimental system shows that the MBA algorithm is effective and efficient with computing time reduced by over 20%.

关 键 词:服务质量 市场模型 线性预测 遗传算法 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象