检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学
出 处:《动力工程》2004年第6期845-851,共7页Power Engineering
基 金:国家自然科学基金(50205025);浙江省自然科学基金项目(5001004)
摘 要:希尔伯特黄变换(Hilbert-HuangTransformation,HHT),是先把一列时间序列数据通过经验模态分解(EmpiricalModeDecomposition,EMD),然后经过希尔伯特变换获得频谱的信号处理新方法。详细地介绍了HHT方法的理论和算法。首先,通过仿真信号把该方法与小波变换(WaveletTransformation,WT)方法进行了比较研究,验证了方法的优越性;然后,把该方法用于旋转机械油膜涡动故障诊断中,研究结果表明:该方法相对传统的分析方法在较低转速区能更早发现油膜涡动故障,说明把基于HHT的时频分析方法用于旋转机械故障诊断是有效的。The Hilbert-Huang Transformation (HHT) consists of the following steps: First, decomposition of time sequenced data by empirical modes (EMD) followed by a Hilbert transformation to obtain a new method of spectrum treatment. In this paper, the theory and algorithm of the HHT is explained in detail. A comparison is performed between this method and the Wavelet Transformation (WT) method with the help of simulated signals, which shows that this method is superior to the WT's. The method has been applied to diagnose oil film whirling fault signals. Results show that this method is able to detect oil film whirling earlier and at a lower rotor speed than the traditional method. It can be concluded that the HHT-based method can effectively be applied to the fault diagnosis of rotating machinery. Figs 11 and refs 8.
关 键 词:动力机械工程 油膜涡动 故障诊断 经验模态分解 希尔伯特黄变换 时频分析
分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222