THE ABSTRACT CAUCHY PROBLEM AND A GENERALIZATION OF THE LUMER-PHILLIPS THEOREM  被引量:6

THE Abstract CAUCHY PROBLEM AND A GENERALIZATION OF THE LUMER-PHILLIPS THEOREM

作  者:LI YANGRONG 

机构地区:[1]不详

出  处:《Chinese Annals of Mathematics,Series B》1998年第3期349-358,共10页数学年刊(B辑英文版)

摘  要:For injective, bounded operator C on a Banach space X , the author defines the C -dissipative operator, and then gives Lumer-Phillips characterizations of the generators of quasi-contractive C -semigroups, where a C -semigroup T(·) is quasi-contractive if ‖T(t)x‖‖Cx‖ for all t0 and x∈X . This kind of generators guarantee that the associate abstract Cauchy problem u′(t,x)=Au(t,x) has a unique nonincreasing solution when the initial data is in C(D(A)) (here D(A) is the domain of A ). Also, the generators of quasi isometric C -semigroups are characterized.For injective, bounded operator C on a Banach space X , the author defines the C -dissipative operator, and then gives Lumer-Phillips characterizations of the generators of quasi-contractive C -semigroups, where a C -semigroup T(·) is quasi-contractive if ‖T(t)x‖‖Cx‖ for all t0 and x∈X . This kind of generators guarantee that the associate abstract Cauchy problem u′(t,x)=Au(t,x) has a unique nonincreasing solution when the initial data is in C(D(A)) (here D(A) is the domain of A ). Also, the generators of quasi isometric C -semigroups are characterized.

关 键 词:Semigroups of operators C-SEMIGROUPS Dissipative operators Abstract Cauchy problems 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象