检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIUShi-Kuo FUZun-Tao LIUShi-Da LIANGFu-Ming XINGuo-Jun
机构地区:SchoolofPhysics,PekingUniversity,Beijing100871,China
出 处:《Communications in Theoretical Physics》2004年第6X期814-816,共3页理论物理通讯(英文版)
基 金:国家自然科学基金,科技部专项基金
摘 要:The solitary wave and wave front are two important behaviors of nonlinear evolution equations. Geometri cally, solitary wave and wave front are all plane curve. In this paper, they can be represented in terms of curvature c(s), which varies with arc length s. For solitary wave when s →±∞, then its curvature c(s) approaches zero, and when s = 0, the curvature c(s) reaches its maximum. For wave front, when s →±∞, then its curvature c(s) approaches zero, and when s = 0, the curvature c(s) is still zero, but c'(s) ≠ 0. That is, s = 0 is a turning point. When c(s) is given, the variance at some point (x, y) in stream line with arc length s satisfies a 2-order linear variable-coefficient ordinary differential equation. From this equation, it can be determined qualitatively whether the given curvature is a solitary wave or wave front.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117