Solitary Wave and Wave Front as Viewed From Curvature  

在线阅读下载全文

作  者:LIUShi-Kuo FUZun-Tao LIUShi-Da LIANGFu-Ming XINGuo-Jun 

机构地区:SchoolofPhysics,PekingUniversity,Beijing100871,China

出  处:《Communications in Theoretical Physics》2004年第6X期814-816,共3页理论物理通讯(英文版)

基  金:国家自然科学基金,科技部专项基金

摘  要:The solitary wave and wave front are two important behaviors of nonlinear evolution equations. Geometri cally, solitary wave and wave front are all plane curve. In this paper, they can be represented in terms of curvature c(s), which varies with arc length s. For solitary wave when s →±∞, then its curvature c(s) approaches zero, and when s = 0, the curvature c(s) reaches its maximum. For wave front, when s →±∞, then its curvature c(s) approaches zero, and when s = 0, the curvature c(s) is still zero, but c'(s) ≠ 0. That is, s = 0 is a turning point. When c(s) is given, the variance at some point (x, y) in stream line with arc length s satisfies a 2-order linear variable-coefficient ordinary differential equation. From this equation, it can be determined qualitatively whether the given curvature is a solitary wave or wave front.

关 键 词:曲率 孤波 波阵面 同宿轨 非线性偏微分方程 

分 类 号:O436[机械工程—光学工程] O175.29[理学—光学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象