检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓华[1] 山世光[1] 曹波[1] 高文[1] 周德龙[1] 赵德斌[1]
机构地区:[1]中国科学院计算技术研究所数字化研究室,北京100080
出 处:《计算机辅助设计与图形学学报》2005年第1期9-17,共9页Journal of Computer-Aided Design & Computer Graphics
基 金:国家"八六三"高技术研究发展计划项目 (2 0 0 1AA114 0 10 );国家自然科学基金重点项目 (60 3 3 2 0 10 )
摘 要:人脸图像数据库是人脸识别算法研究、开发、评测的基础 ,具有重要的意义 介绍了自行创建并已经部分共享的CAS PEAL大规模中国人脸图像数据库及其基准测试结果 CAS PEAL人脸图像数据库中包含了 10 4 0名中国人共 994 5 0幅头肩部图像 所有图像在专门的采集环境中采集 ,涵盖了姿态、表情、饰物和光照 4种主要变化条件 ,部分人脸图像具有背景、距离和时间跨度的变化 目前该人脸图像数据库的标准训练、测试子库已经公开发布 与其他已经公开发布的人脸图像数据库相比 ,CAS PEAL人脸图像数据库在人数、图像变化条件等方面具有综合优势 ,将对人脸识别算法的研究、评测产生积极的影响 同时 ,作为以东方人为主的人脸图像数据库 ,CAS PEAL人脸图像数据库也使人脸识别算法在不同人种之间的比较成为可能 ,利于人脸识别算法在国内的实用化 还给出了两种基准人脸识别算法 (Eigenface和Correlation)和两个著名商业系统在该人脸图像数据库上的测试结果 。As the basis of research, development and evaluation of face recognition algorithms, face image database is of great importance. In this paper, we introduce the construction and basic content of the CAS-PEAL, large-scale Chinese face database and some primary evaluation results based on the database. The CAS-PEAL face database consists of 99?450 facial images of 1?040 Chinese individuals. All the images in the database were collected in specially designed environment with four principal variations of pose, expression, accessory and lighting, as well as three other variations in terms of background, distance and aging. Currently, the standard training set and probe set of CAS-PEAL face database have been made publicly available for research purpose only on a case-by-case basis. Compared with other public face databases, CAS-PEAL excels in its large-scale and variation modes and is expected to have positive impact on the development and evaluation of face recognition algorithms. In addition, as an oriental face image database, CAS-PEAL makes possible the comparison of algorithms' performance between different ethnic groups and will benefit the application of face recognition technology in China. This paper also gives the evaluation results of two basic face recognition algorithms (Eigenface and Correlation) and two commercial systems, explains the difficulty of the database to the face recognition algorithms and analyses the current development status of face recognition technology.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.25